53 research outputs found

    25-nm diamond crystals hosting single NV color centers sorted by photon-correlation near-field microscopy

    Full text link
    Diamond nanocrystals containing highly photoluminescent color centers are attractive non-classical and near-field light sources. For near-field applications the size of the nanocrystal is crucial since it defines the optical resolution. NV (Nitrogen-Vacancy) color centers are efficiently created by proton irradiation and annealing of a nanodiamond powder. Using near-field microscopy and photon statistics measurements, we show that nanodiamond with size down to 25 nm can hold a single NV color center with bright and stable photoluminescence

    Comparison of the photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles. Observation of the diffusion of diamond nanoparticles in living cells

    Get PDF
    Long-term observations of photoluminescence at the single-molecule level were until recently very diffcult, due to the photobleaching of organic ?uorophore molecules. Although inorganic semiconductor nanocrystals can overcome this diffculty showing very low photobleaching yield, they suffer from photoblinking. A new marker has been recently introduced, relying on diamond nanoparticles containing photoluminescent color centers. In this work we compare the photoluminescence of single quantum dots (QDs) to the one of nanodiamonds containing a single-color center. Contrary to other markers, photoluminescent nanodiamonds present a perfect photostability and no photoblinking. At saturation of their excitation, nanodiamonds photoluminescence intensity is only three times smaller than the one of QDs. Moreover, the bright and stable photoluminescence of nanodiamonds allows wide field observations of single nanoparticles motion. We demonstrate the possibility of recording the tra jectory of such single particle in culture cells

    Behavioral Pathways to Private Well Risk Mitigation: A Structural Equation Modeling Approach

    Get PDF
    Complex, multi hazard risks such as private groundwater contamination necessitate multiannual risk reduction actions including seasonal, weather-based hazard evaluations. In the Republic of Ireland (ROI), high rural reliance on unregulated private wells renders behavior promotion a vital instrument toward safeguarding household health from waterborne infection. However, to date, pathways between behavioral predictors remain unknown while latent constructs such as extreme weather event (EWE) risk perception and self-efficacy (perceived behavioral competency) have yet to be sufficiently explored. Accordingly, a nationwide survey of 560 Irish private well owners was conducted, with structural equation modeling (SEM) employed to identify underlying relationships determining key supply management behaviors. The pathway analysis (SEM) approach was used to model three binary outcomes: information seeking, post-EWE action, and well testing behavior. Upon development of optimal models, perceived self-efficacy emerged as a significant direct and/or indirect driver of all three behavior types—demonstrating the greatest indirect effect (ÎČ=−0.057) on adoption of post-EWE actions and greatest direct (ÎČ = 0.222) and total effect (ÎČ = 0.245) on supply testing. Perceived self-efficacy inversely influenced EWE risk perception in all three models but positively influenced supply awareness (where present). Notably, the presence of a vulnerable (infant and/or elderly) household member negatively influenced adoption of post-EWE actions (ÎČ = −0.131, p = 0.016). Results suggest that residential and age-related factors constitute key demographic variables influencing risk mitigation and are strongly mediated by cognitive variables—particularly self-efficacy. Study findings may help contextualize predictors of private water supply management, providing a basis for future risk-based water interventions

    Genotoxic and stress inductive potential of cadmium in Xenopus laevis larvae

    Get PDF
    The present investigation evaluates the toxic potential of Cd in larvae of the frog Xenopus laevis after 12 days of exposure to environmentally relevant contamination levels, close to those measured in the river Lot (France). Several genotoxic and detoxification mechanisms were analyzed in the larvae: clastogenic and/or aneugenic effects in the circulating blood by micronucleus (MN) induction, metallothionein (MT) production in whole larvae, gene analyses and Cd content in the liver and also in the whole larvae. The results show: (i) micronucleus induction at environmental levels of Cd contamination (2, 10, 30 ÎŒg L−1); (ii) an increased and concentration-dependent quantity of MT in the whole organism after contamination with 10 and 30 ÎŒg Cd L−1 (a three- and six-fold increase, respectively) although no significant difference was observed after contamination with 2 ÎŒg Cd L−1; (iii) Cd uptake by the whole organism and by the liver as a response to Cd exposure conditions; (4) up-regulation of the genes involved in detoxification processes and response to oxidative stress, while genes involved in DNA repair and apoptosis were repressed. The results confirm the relevance of the amphibian model and highlight the complementarity between a marker of genotoxicity, MT production, bioaccumulation and genetic analysis in the evaluation of the ecotoxicological impact

    Isotope study on organic nitrogen of Westphalian anthracites from the Western Middle field of Pennsylvania (U.S.A.) and from the Bramsche Massif (Germany)

    Get PDF
    International audienceThe objective of this study was to examine an aspect of the thermal cycling of organic nitrogen in sediments and metasediments. The cycling of organic nitrogen is important because sedimentary organic matter is a shuttle of nitrogen from the atmosphere to the lower crust and thermal decomposition of organic matter is a critical step in the recycling of nitrogen between the different nitrogen pools. Abundance and isotopic composition of organic nitrogen were determined in the particular case of two low sulfur Westphalian anthracites series from Pennsylvania and Bramsche Massif. They represent good examples of Euramerica coals spanning the whole range of anthracitization in single fields. Gold cell experimental simulation of the denitrogenation process was conducted at moderate pressure to show that both suites make ideal metamorphic profiles without any shift due to change of facies or to hydrothermal disturbance. During anthracitization, organic nitrogen content decreases rapidly while organic nitrogen isotopic composition does not change with rank increase. The preservation of the isotopic signature implies that organic nitrogen isotopes could be used as indicators for the paleoecological and paleodepositional history reconstruction of the basins. The striking contrast between the rapid and sharp decrease of nitrogen organic content and the invariance of its isotopic composition during the whole anthracitization suggests that ammonia is an important product of the denitrogenation process

    Socio-Economic Factors Associated With The Incidence of Shiga-Toxin Producing Escherichia Coli (STEC) Enteritis and Cryptosporidiosis in the Republic of Ireland, 2008–2017

    Get PDF
    The Republic of Ireland (ROI) currently reports the highest incidence rates of Shiga-toxin producing Escherichia coli (STEC) enteritis and cryptosporidiosis in Europe, with the spatial distribution of both infections exhibiting a clear urban/rural divide. To date, no investigation of the role of socio-demographic profile on the incidence of either infection in the ROI has been undertaken. The current study employed bivariate analyses and Random Forest classification to identify associations between individual components of a national deprivation index and spatially aggregated cases of STEC enteritis and cryptosporidiosis. Classification accuracies ranged from 78.2% (STEC, urban) to 90.6% (cryptosporidiosis, rural). STEC incidence was (negatively) associated with a mean number of persons per room and percentage of local authority housing in both urban and rural areas, addition to lower levels of education in rural areas, while lower unemployment rates were associated with both infections, irrespective of settlement type. Lower levels of third-level education were associated with cryptosporidiosis in rural areas only. This study highlights settlement-specific disparities with respect to education, unemployment and household composition, associated with the incidence of enteric infection. Study findings may be employed for improved risk communication and surveillance to safeguard public health across socio-demographic profiles

    Nanosized carbon forms in the processes of pressure–temperature-induced transformations of hydrocarbons

    No full text
    The products of thermal conversions of naphthalene, anthracene, pentacene, perylene, and coronene at 8 GPa in the temperature range up to 1300 C have been studied by scanning electron and high-resolution transmission electron microscopies. As a result, it has been established that various nanometer-sized carbon species (spherical and coalesced two-core onion-like carbon particles, faceted polyhedral particles, graphitic ribbons, graphitic folds, and nanocrystalline diamonds) are present in the conversion products together with micron-sized crystallites of graphite and diamond. 2006 Elsevier Ltd. All rights reserved

    Nitrogen isotopic evolution of carbonaceous matter during metamorphism: Methodology and preliminary results

    Get PDF
    Nitrogen content and isotopic composition of carbonaceous-rich metasediments were determined by on-line and sealed-tube combustion using ultra-high vacuum line and static mass spectrometer adapted to analyse nitrogen nanomoles. Accurate measurements showed that nitrogen amount released by on-line combustion technique was underestimated to various extents. As a result, the nitrogen isotopic composition was not correctly determined. In contrast, sealed-tube combustion appeared to yield the most reproducible and accurate measurements, except for nitrogen depleted carbonaceous matter (semi-graphite to graphite transition) containing less than around 60 ppm of nitrogen, which were contaminated during their extraction from the rock. In view of that, a preliminary sealed-tube investigation of the organic nitrogen content and isotopic composition in a homogenous series of low-grade metasediments was undertaken: in spite of an important nitrogen loss, the carbonaceous matter nitrogen isotopic composition remains about the same during the meta-anthracite and semi-graphitisation stages. Inferences on the process of organic nitrogen mineralization during carbonaceous matter metamorphism can be drawn and several paleo-biogeochemical implications envisaged

    Fluorescence and spin properties of defects in single digit nanodiamonds

    Get PDF
    International audienceThis article reports stable photoluminescence and high-contrast optically detected electron spin resonance (ODESR) from single nitrogen-vacancy (NV) defect centers created within ultrasmall, disperse nanodiamonds of radius less than 4 nm. Unexpectedly, the efficiency for the production of NV fluorescent defects by electron irradiation is found to be independent of the size of the nanocrystals. Fluorescence lifetime imaging shows lifetimes with a mean value of around 17 ns, only slightly longer than the bulk value of the defects. After proper surface cleaning, the dephasing times of the electron spin resonance in the nanocrystals approach values of some microseconds, which is typical for the type Ib diamond from which the nanoparticle is made. We conclude that despite the tiny size of these nanodiamonds the photoactive nitrogen-vacancy color centers retain their bulk properties to the benefit of numerous exciting potential applications in photonics, biomedical labeling, and imaging
    • 

    corecore